🔍Как скрытые состояния в HMM отличаются от скрытых представлений в RNN и как это влияет на интерпретируемость
🧠Скрытые марковские модели (HMM): В HMM скрытые состояния — это дискретные латентные переменные с четким вероятностным значением. Каждое состояние соответствует конкретному режиму или явлению (например, «дождливо» или «солнечно» в модели погоды), что способствует интерпретируемости. Переходы между состояниями описываются матрицей вероятностей.
🤖Рекуррентные нейронные сети (RNN): В отличие от HMM, скрытые состояния в RNN — это непрерывные векторы, которые обучаются автоматически с помощью градиентного спуска. Они могут кодировать сложные аспекты истории последовательности, но не всегда легко интерпретируемы. Каждый элемент скрытого состояния может быть связан с более сложными зависимостями, которые сложно трактовать в явной форме.
💡Главная проблема: При попытке трактовать скрытые состояния в RNN как дискретные состояния в HMM можно столкнуться с ошибками. Непрерывные скрытые представления могут не иметь четких «меток», что затрудняет их интерпретацию и объяснение. Важно учитывать, что RNN может захватывать более сложные, но менее интерпретируемые зависимости.
⚠️Как избежать ошибок: Не стоит пытаться трактовать скрытые состояния RNN как дискретные. Лучше использовать методы интерпретации, такие как визуализация внимания, чтобы понять, как скрытые состояния влияют на выход модели.
🔍Как скрытые состояния в HMM отличаются от скрытых представлений в RNN и как это влияет на интерпретируемость
🧠Скрытые марковские модели (HMM): В HMM скрытые состояния — это дискретные латентные переменные с четким вероятностным значением. Каждое состояние соответствует конкретному режиму или явлению (например, «дождливо» или «солнечно» в модели погоды), что способствует интерпретируемости. Переходы между состояниями описываются матрицей вероятностей.
🤖Рекуррентные нейронные сети (RNN): В отличие от HMM, скрытые состояния в RNN — это непрерывные векторы, которые обучаются автоматически с помощью градиентного спуска. Они могут кодировать сложные аспекты истории последовательности, но не всегда легко интерпретируемы. Каждый элемент скрытого состояния может быть связан с более сложными зависимостями, которые сложно трактовать в явной форме.
💡Главная проблема: При попытке трактовать скрытые состояния в RNN как дискретные состояния в HMM можно столкнуться с ошибками. Непрерывные скрытые представления могут не иметь четких «меток», что затрудняет их интерпретацию и объяснение. Важно учитывать, что RNN может захватывать более сложные, но менее интерпретируемые зависимости.
⚠️Как избежать ошибок: Не стоит пытаться трактовать скрытые состояния RNN как дискретные. Лучше использовать методы интерпретации, такие как визуализация внимания, чтобы понять, как скрытые состояния влияют на выход модели.
The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”
Telegram announces Search Filters
With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.
Библиотека собеса по Data Science | вопросы с собеседований from it